Yuta Saito
Yuta Saito
Home
Publications
Contact
CV
Light
Dark
Automatic
English
日本語
1
Effective Off-Policy Evaluation and Learning in Contextual Combinatorial Bandits
We explore off-policy evaluation and learning (OPE/L) in contextual combinatorial bandits (CCB), where a policy selects a subset in the …
Tatsuhiro Shimizu
,
Koichi Tanaka
,
Ren Kishimoto
,
Haruka Kiyohara
,
Masahiro Nomura
,
Yuta Saito
Cite
Hyperparameter Optimization Can Even be Harmful in Off-Policy Learning and How to Deal with It
There has been a growing interest in off-policy evaluation in the literature such as recommender systems and personalized medicine. We …
Yuta Saito
,
Masahiro Nomura
Cite
Proceedings
Long-term Off-Policy Evaluation and Learning
Short- and long-term outcomes of an algorithm often differ, with damaging downstream effects. A known example is a click-bait …
Yuta Saito
,
Himan Abdollahpouri
,
Jesse Anderton
,
Ben Carterette
,
Mounia Lalmas
Cite
Code
arXiv
Proceedings
Off-Policy Evaluation of Slate Bandit Policies via Optimizing Abstraction
We study off-policy evaluation (OPE) in slate contextual bandits where a policy selects multi-dimensional actions known as slates. This …
Haruka Kiyohara
,
Masahiro Nomura
,
Yuta Saito
Cite
Code
arXiv
Proceedings
Scalable and Provably Fair Exposure Control for Large-Scale Recommender Systems
Typical recommendation and ranking methods aim to optimize the satisfaction of users, but they are often oblivious to their impact on …
Riku Togashi
,
Kenshi Abe
,
Yuta Saito
Cite
Video
arXiv
Proceedings
Towards Assessing and Benchmarking Risk-Return Tradeoff of Off-Policy Evaluation
Off-Policy Evaluation (OPE) aims to assess the effectiveness of counterfactual policies using only offline logged data and is often …
Haruka Kiyohara
,
Ren Kishimoto
,
Kosuke Kawakami
,
Ken Kobayashi
,
Kazuhide Nakata
,
Yuta Saito
Cite
Code
arXiv
Off-Policy Evaluation of Ranking Policies under Diverse User Behavior
Ranking interfaces are everywhere in online platforms. There is thus an ever growing interest in their Off-Policy Evaluation (OPE), …
Haruka Kiyohara
,
Tatsuya Matsuhiro
,
Yusuke Narita
,
Nobuyuki Shimizu
,
Yasuo Yamamoto
,
Yuta Saito
Cite
Code
Poster
Slides
arXiv
Proceedings
Off-Policy Evaluation for Large Action Spaces via Conjunct Effect Modeling
We study off-policy evaluation (OPE) of contextual bandit policies for large discrete action spaces where conventional …
Yuta Saito
,
Qingyang Ren
,
Thorsten Joachims
Cite
Code
Poster
arXiv
Proceedings
Policy-Adaptive Estimator Selection for Off-Policy Evaluation
Off-policy evaluation (OPE) aims to accurately evaluate the performance of counterfactual policies using only offline logged data. …
Takuma Udagawa
,
Haruka Kiyohara
,
Yusuke Narita
,
Yuta Saito
,
Kei Tateno
Cite
Code
Slides
arXiv
Fair Ranking as Fair Division: Impact-Based Individual Fairness in Ranking
Rankings have become the primary interface of many two-sided markets. Many have noted that the rankings not only affect the …
Yuta Saito
,
Thorsten Joachims
Cite
Code
Video
Slides
arXiv
Proceedings
»
Cite
×