Yuta Saito
Yuta Saito
Home
Publications
Contact
CV
日本語
Light
Dark
Automatic
2021
A Real-World Implementation of Unbiased Lift-based Bidding System
Daisuke Moriwaki
,
Yuta Hayakawa
,
Isshu Munemasa
,
Yuta Saito
,
Akira Matsui
,
Masashi Shibata
Cite
Open Bandit Dataset and Pipeline: Towards Realistic and Reproducible Off-Policy Evaluation
Off-policy evaluation (OPE) aims to estimate the performance of hypothetical policies using data generated by a different policy. …
Yuta Saito
,
Shunsuke Aihara
,
Megumi Matsutani
,
Yusuke Narita
Cite
Code
Dataset
Proceedings
arXiv
Efficient Hyperparameter Optimization under Multi-Source Covariate Shift
A typical assumption in supervised machine learning is that the train (source) and test (target) datasets follow completely the same …
Masahiro Nomura
,
Yuta Saito
Cite
Code
Proceedings
arXiv
Evaluating the Robustness of Off-Policy Evaluation
Off-policy Evaluation (OPE), or offline evaluation in general, evaluates the performance of hypothetical policies leveraging only …
Yuta Saito
,
Takuma Udagawa
,
Haruka Kiyohara
,
Kazuki Mogi
,
Yusuke Narita
,
Kei Tateno
Cite
Code
Slides
Proceedings
arXiv
Optimal Off-Policy Evaluation from Multiple Logging Policies
We study off-policy evaluation (OPE) from multiple logging policies, each generating a dataset of fixed size, i.e., stratified …
Nathan Kallus
,
Yuta Saito
,
Masatoshi Uehara
Cite
Code
Proceedings
arXiv
Cite
×